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In this theoretical study, the forces, pressures, energies and kinetics for liquid rising in three types of
capillary tubes were analyzed: one type was chemically homogeneous and the other two were nonuni-
form with chemical gradients. The tubes with chemical gradients were ‘‘designed’’ such that the liquid
would still rise and attain the same ultimate height as an equivalent homogenous tube, but as shown
here, the energies and kinetics of these inhomogeneous tubes are anticipated to be quite different from
their homogeneous counterpart.
� 2015 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Some of the biggest names in modern science have studied and
contributed to our understanding of capillary rise: da Vinci, Boyle,
Newton, Young, Laplace, Gauss, Maxwell and Einstein, to name a
few [1]. The earliest investigators attempted to elucidate the seem-
ingly spontaneous rise of liquids in small diameter tubes [1a,2], but
also, more broadly, the character and range of molecule interac-
tions [1a,1e]. These pioneering studies were often framed in terms
of forces and pressures. Analyses of energies [3] and kinetics [4]
came later.

More recently investigators have considered capillary rise or
imbibition in the absence of gravity [5], in tilted tubes [6], in
non-circular tubes [7], in tapered tubes [8], in rough tubes [5b],
in tubes where inertia dominates [4d,9], in tubes where the contact
angle [5b,10] or viscosity [11] depends on rise velocity, in tubes
with surfactants solutions [12], as well as in various types of por-
ous media [13].

With all that has been done, there still are unanswered ques-
tions. For instance, how would the capillary rise differ if the tube
were chemically heterogeneous? There are undoubtedly many
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scenarios that could be considered. One could imagine inhomo-
geneities inside a tube that would completely impede the rise of
liquid. On the other hand, if certain types of nonuniformities
allowed liquid to rise, would liquid reach the same height as in
an otherwise equivalent homogeneous tube? How would forces,
pressures, energies and kinetics be affected?

These questions are not solely of academic interest. A wide vari-
ety of industrial products, such as filters, purifiers, gas contactors
and various micro-fluidic devices, rely on controlling the wettabil-
ity inside hollow fibers and other porous materials. In order to
accurately characterize and control wettability inside porous
materials, it is necessary to understand the role of chemical
heterogeneities.

Thus, in this study, the rise of liquid in nonuniform capillary
tubes with chemical gradients is examined. First, the forces, pres-
sures and energies associated with a wettable, homogeneous tube
are analyzed. Next, the same quantities are evaluated for two types
of tubes that exhibit chemical gradients, yet still allow liquid to
rise to the same level as a wettable, homogeneous tube of the same
diameter. The kinetics of some of these nonuniform tubes is also
explored.

2. Theory

2.1. Capillary rise in a smooth vertical tube

Consider the vertical capillary tube shown in Fig. 1. It is smooth
with a constant, inner diameter of D. The capillary is brought into
contact with a liquid of surface tension c, density of q, and viscos-
ity of l, such that its bottom just touches the liquid, Fig. 1a. The liq-
uid wets the tube with an advancing contact angle of h. If D is small
and h < 90�, then a concave meniscus forms inside the tube. The
curvature of the meniscus and the surface tension of the liquid cre-
ate an upward ‘‘Laplace’’ pressure (pc),

pc ¼
4c
D

cos h: ð1Þ
γ

θ
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h

z
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Fig. 1. Depiction of capillary rise in a small diameter tube. (a) The tube contacts the
liquid and forms a concave meniscus inside the tube. (b) Liquid rises vertically. (c)
The liquid stops at an equilibrium height of h. (d) A close-up view of the meniscus.
The Laplace pressure causes the liquid to rise in the vertical or z
direction, Fig. 1b. As the liquid rises, the magnitude of the hydro-
static pressure inside the tube (ph) increases with the transient
height of the liquid column (z),

ph ¼ qgz; ð2Þ

where g is the acceleration due to gravity. The hydrostatic pressure
is directed downward, acting against the Laplace pressure. The dif-
ference between Laplace and hydrostatic pressures (Dp),

Dp ¼ pc � ph ¼
4c
D

cos h� qgz; ð3Þ

determines the rate of rise and the extent of energy dissipation
within the liquid column. Flow ceases where Dp = 0 and z = h,
Fig. 1c. Thus, from Eq. (3), the final rise height (h) can be estimated
as [1a,1d,1e,14]

h ¼ 4c cos h
qgD

: ð4Þ

If h = 0�, then Eq. (4) reduces to

h ¼ 4c
qgD

: ð5Þ
2.2. Wettability of the model tubes

Several wetting profiles, shown in Fig. 2, were used to explore
variations in forces, pressures, energies and kinetics as liquid rises
in a capillary tube. The tube shown in Fig. 2a is homogeneous and
wettable with h = 0� along its entire length. Fig. 2 also portrays two
types of nonuniform tubes that exhibit a wetting gradient. The
walls of these tubes are smooth with a constant diameter of D,
but h varies along their length. These tubes are relatively lyophobic
near their bottoms where z = 0 and their wettability increases with
z until h = 0� where z/h = 1. Fig. 2b shows the profile of a nonuni-
form tube where h varies exponentially as

cos h ¼ ez=h�1; ð6Þ
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Fig. 2. Contact angle profiles inside of three types of capillary tubes: one type with
homogeneous wettability where cosh = 1 (h = 0�) and two types of heterogeneous
tubes with chemical gradients where the wettability varies either as cosh = ez/h�1 or
as cosh = (z/h)n.
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from h = 68� at the bottom of tube (z/h = 0) to h = 0� at its ultimate
rise height (z/h = 1). Fig. 2c shows a family of profiles where h varies
according to a simple power law relation,

cos h ¼ ðz=hÞn; ð7Þ

from h = 90� at the bottom to h = 0� at the top. As n ? 0, the wetting
gradient vanishes and its wetting profile approaches that of a wet-
table, homogeneous tube.

2.3. Energy balance

The energy balance for liquid slowly rising in a capillary tube
consists of the three terms: the work done in lifting the liquid
(w), a term that represents viscous dissipation (K) in the bulk of
the flowing liquid and a potential energy term (�DU) that accounts
for energy stored in the liquid column [15],
w� K ¼ �DU: ð8Þ
2.4. Energies of homogeneous tubes

Let us begin with the simple case of a chemically homogeneous
tube. Its inner surface is wettable along its entire length, such that
h = 0� for all z. The work done as surface tension lifts liquid upward
through a tube (w) can be calculated by integrating the capillary
force (fc) from z = 0 to z = h [16],

w ¼
Z h

0
f c � dz; ð9Þ

where fc is the product of length of the contact line and the vertical
component of the surface tension,

f c ¼ pDc cos h: ð10Þ

Combining (9) and (10) and integrating gives

w ¼ pDhc cos h: ð11Þ

The wetted area (A) of the inside of the capillary is

A ¼ pDh: ð12Þ

Thus, the work done per wetted area (w/A) of a homogeneous,
wettable tube (h = 0�) is [16]

w
A
¼ c: ð13Þ

The energy lost due to viscous dissipation (K) for laminar flow
through a tube of constant cross section generally can be estimated
from the liquid volume in the tube (V) and its hydrostatic pressure
(ph) [17],

K ¼
Z

V � dph: ð14Þ

For capillary rise inside a wettable homogenous tube, Eq. (14)
becomes

K ¼
Z h

0

p
4

D2 � qgz � dz ¼ p
8

qgD2h2
: ð15Þ

Hence, viscous dissipation per wetted area (K/A) is

K
A
¼ 1

8
qgDh ¼ 1

2
c: ð16Þ

According to elementary thermodynamics [18], the change in
the gravitational potential energy (�DU) can be calculated by
integrating the hydrostatic force (fh) as liquid rises from z = 0 to
z = h,

�DU ¼
Z h

0
f h � dz: ð17Þ
The hydrostatic force is the product of the hydrostatic pressure
(ph) and the cross-sectional area of the tube (Ac), which in turn can
be framed in terms of liquid density, height and tube diameter,

f h ¼ ph � Ac ¼ qgz � p
4

D2: ð18Þ

Combining Eqs. (17) and (18) gives an expression for a thin slice
of the liquid column of height dz that has a local gravitational
energy of qgz(pD2/4)dz, which can be integrated to yield the
change in potential energy of the full height (h) of the liquid col-
umn [3,15],

�DU ¼
Z h

0
qgz � p

4
D2dz ¼ p

8
qgD2h2

: ð19Þ

Subsequently, the change in potential energy per wetted area
(�DU/A) is

�DU
A
¼ 1

8
qgDh ¼ 1

2
c: ð20Þ
2.5. Energies of heterogeneous tubes

The work of wetting and the energy lost due to viscous dissipa-
tion for the model nonuniform tubes can be calculated using the z-
dependent contact angle profiles. For the exponential wetting pro-
file, Eq. (6), the work of wetting per area and dissipation per area
are

w
A
¼ ð1� e�1Þc ð21Þ

and

K
A
¼ 1

2
� e�1

� �
c: ð22Þ

For the power law profiles, Eq. (7), they are

w
A
¼ 1

nþ 1
c ð23Þ

and

K
A
¼ 1

2
� 1� n
1þ n

c: ð24Þ

The change in potential energy, including the nonuniform ones,
depends on the net change in the height of the liquid in the tube.
Thus, for all cases,

�DU
A
¼ 1

2
c: ð25Þ
2.6. Rate of rise

The rate of liquid rise in a capillary tube was first analyzed in
the early part of the twentieth century [4]. Working equations
can be derived by starting with the Poiseulle equation [17], which
relates the volumetric flow rate (Q) to the difference between the
Laplace and hydrostatic pressures (Dp),

Q ¼ pD4

128lz
Dp: ð26Þ

Here, only bulk viscous friction is taken into account. Any fric-
tion at the three-phase contact line is ignored. For a vertical tube
of constant diameter (D), the transient liquid height (z) changes
with time (t) as

Q ¼ p
4

D2 @z
@t
: ð27Þ
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Combining Eqs. (26) and (27) and substituting Eq. (3) for Dp
yields

@z
@t
¼ D

8l
c cos h � z�1 � 1

4
qgD

� �
: ð28Þ

With the initial boundary condition of z = h when t = 0, this dif-
ferential equation can be solved for a tube with constant contact
angle to arrive at the classic Lucas–Washburn equation,

t ¼ � 32l
qgD2 zþ 4c cos h

qgD
ln 1� qgD

4c cos h
z

� �� �
: ð29Þ

For the model nonuniform tubes with power law wetting
dependence, modified Lucas–Washburn equations can be derived
by substituting Eq. (7) into (28) and integrating. For example, if
n = ½, then the modified Lucas–Washburn equation is

t ¼ � 32l
qgD2 zþ 8c

qgD

ffiffiffiffiffiffiffiffiffiffiffiffi
qgDz

4c

s
þ ln 1�

ffiffiffiffiffiffiffiffiffiffiffiffi
qgDz

4c

s !" #" #
: ð30Þ
3. Results and discussion

3.1. Pressure versus transient height

For a liquid to rise inside a tube, the Laplace pressure of the con-
cave meniscus must be greater than the hydrostatic pressure of the
liquid column, pc > ph. Fig. 3 shows dimensionless capillary pres-
sure (pcD/4c) and hydrostatic pressure (ph/qgh) for liquid rising
inside smooth tubes with various wetting profiles. The dimension-
less height (z/h) ranges from z/h = 0 at the bottom of the tube to z/
h = 1 at the ultimate height of the liquid column. In all cases, the
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Fig. 3. Dimensionless capillary pressure (pcD/4c) and hydrostatic pressure (ph/qgh)
for liquid rising inside a smooth tube of diameter D. The dimensionless height (z/h)
ranges from z/h = 0 at the bottom of the tube to z/h = 1 at the ultimate height of the
liquid column. For cosh = 1, the tube is homogeneous and wettable (h = 0�) from top
to bottom. For cosh = ez/h�1, the contact angle varies exponentially from h = 68� at
the bottom of tube (z/h = 0) to h = 0� at the top (z/h = 1), according to Eq. (6). For
cosh = (z/h)n, the contact angle varies according to simple power law relation, Eq.
(7), from h = 90� at the bottom of tube (z/h = 0) to h = 0� at the top (z/h = 1).
magnitude of the hydrostatic pressure (ph) increases linearly with
liquid height. On the other hand, the Laplace pressure depends on
the type of wetting profile. For the case of the homogeneous, wet-
table tube (h = 0� and cosh = 1), the Laplace pressure (pc) is con-
stant as liquid rises and subsequently, the overall driving
pressure (Dp), decreases linearly until pc = ph.

Similarly, for liquid to rise in the tubes with chemical gradients,
pc > ph. However, because the Laplace pressure is reduced by the
wetting gradient, the overall driving pressure, the energies and
kinetics of the nonuniform tubes are significantly less than the
geometrically equivalent homogeneous tubes. For the exponential
wetting gradient, the initial value of Dp as liquid enters the bottom
end of a given tube is only 37% of that found in a homogeneous,
wettable tube of the same D. In order for liquid to rise in a tube
with a power wetting gradient, n must be <1. Otherwise, if n P 1,
then pc 6 ph and liquid will not rise.
3.2. Energies

The work of wetting (w), viscous dissipation (K) and potential
energy change (�DU) of liquid rising in capillary tubes are extrinsic
quantities that depend on the diameter of the tube and the ulti-
mate rise height of the liquid. These quantities, derived in the
Theory section, can be converted into intrinsic quantities by fram-
ing them in terms of wetted area (A). Furthermore, using Eq. (5) for
final rise height, K/A and �DU/A can be rewritten in terms of sur-
face energy of the liquid, which allows direct comparison to w/A
values.

Table 1 lists the various intrinsic energies associated with liquid
rising in homogeneous and heterogeneous tubes. For wettable,
homogenous tubes, ½w/A = K/A = �DU/A = ½c, which implies that
half the work per area done in lifting the liquid is stored as poten-
tial energy while the other half is dissipated [16]. The same is not
true for the heterogeneous tubes. Even though liquids are expected
to rise to the same height and the change in potential energy is
expected to be the same, chemical gradients in the heterogeneous
tubes alter the capillary forces, which in turn influence the work of
wetting and dissipation. The presence of lyophobic gradients
reduces w/A and K/A values. For the nonuniform tube with an
exponential wetting profile, w/A = 0.63c and K/A = 0.13c. The dif-
ference between them is ½c, as expected from our energy balance,
Eq. (8).

Values of w/A and K/A for heterogeneous tubes with power law
wetting profiles vary with the exponent n, as shown in Fig. 4.
Values of w/A ranged from ½c to c and values of K/A, from 0 to
½c. Once again, the difference between w/A and K/A was ½c for
any given value of n. Therefore, the difference between the work
of wetting and the energy dissipated during capillary rise was
equal to the change in potential energy.
3.3. Rate of rise

Because the presence of chemical gradients reduces the dif-
ferential driving pressure, we anticipate liquid should rise more
slowly in the nonuniform tubes. Indeed, the calculations presented
here indicate this should be true. Fig. 5 shows dimensionless plots
of transient rise height versus time for wettable, homogenous
Table 1
Energies associated with liquid rising in homogeneous or heterogeneous tubes.

Type cosh h (�) w/A K/A �DU/A (w–K)/A

Homogeneous 1 0 c ½c ½c ½c
Heterogeneous ez/h�1 0–68 (1�e�1)c (½�e�1)c ½c ½c

(z/h)n 0–90 [(1/(n + 1)]c ½[(1�n)/(1 + n)]c ½c ½c
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tubes, where cosh = 1, and for heterogeneous tubes with power
law wetting gradients, cosh = (z/h)n, where n values range between
½ and 9/10. For n = ½, the rise is slower than for a homogeneous
tube of the same diameter, but not by much. If a power law gradi-
ent such that n ? 1 is employed, then the rate of rise is slowed
significantly.
3.4. An example

Consider ethylene glycol rising in small diameter tubes with
homogeneous, exponential and power law wetting profiles.
Ethylene glycol has a surface tension of c = 48 mN/m, a density of
q = 1110 kg/m3, a viscosity of l = 20 mPa�s and a capillary length
of k = (c/qg)1/2 = 2 mm [19]. It has been observed that when
D 6 k, rise of liquid inside capillary tubes is sufficiently slow that
it obeys the Lucas–Washburn equation [7e]. Accordingly, for our
example assume that D = 0.2 mm. Here, the final rise height would
be h = 88 mm for homogenous as well as nonuniform tubes.
Because the liquid rises to the same height for the various tube
types, the change in potential energy per wetted area is also the
same for all of them, �DU/A = 24 mJ/m2. On the other hand, wet-
ting gradients reduced the wetting energy available to drive flow.
Values of w/A ranged from 48 mJ/m2 for a homogenous tube to
25.3 mJ/m2 for a power law tube with n = 9/10. For a homogenous
tube with D = 0.2 mm, the time to reach the maximum rise height
of 88 mm (z/h = 0.999) would be 765 s or roughly 13 min.
Conversely, for a power law tube with n = 9/10, it would take more
than 10 times as long, about 8140 s, or more than two hrs.
t(ρ2g2D3/γμ) 
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Fig. 5. Dimensionless plots of rise height versus time for: homogenous wettable
tubes, cosh = 1, and heterogeneous tubes with various power law wetting gradients,
cosh = (z/h)n.
4. Conclusions

The forces, pressures, energies and kinetics were examined for
capillary tubes with wetting gradients that ranged from relatively
lyophobic at their bottom to completely wettable at their top. The
profile of the wetting gradients was chosen such that the liquid
would rise to the same height as in a wettable, homogeneous
tube of the same diameter. Homogeneous or not, the change in
potential energy per wetted area was the same. In contrast, the
work of wetting, energy dissipation, and rise kinetics all
depended on the wetting profiles. This analysis demonstrates that
final rise height cannot be used as an unequivocal indicator of
homogeneity.
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